Statistics of the generalized maximum likelihood estimation in deformed exponential families

M. Henmi

The Institute of Statistical Mathematics

An exponential family plays an important role in statistics and it is well-known that the maximum likelihood estimation can be geometrically explained in terms of information geometry. That is, an exponential family is a dually flat space with respect to the exponential and the mixture connections and the maximum likelihood estimator is obtained by the orthogonal projection of the mixture geodesic.

A deformed exponential family is a generalization of exponential families, which was originally introduced in the context of anomalous statistical physics [1]. From a viewpoint of information geometry, Matsuzoe and Henmi (2013) [2] showed that a deformed exponential family has two different kinds of dually flat structures as a statistical manifold. One of them is related with the U-divergence geometry in machine learning [3] and with robust statistics for the special case of q-exponential families. However, the statistical meaning of the other geometrical structure, which is a geometry of the generalized maximum likelihood estimation, is still not so clear although it seems to be quite natural from a geometrical point of view.

In this talk, we discuss a role and some properties of the generalized maximum likelihood estimation, which is defined by the maximization of the deformed log-likelihood function, in a deformed exponential family from a statistical point of view. Although there are some studies on it for an i.i.d. sample [4], [5], we especially focus on the case where there exists some correlation in the sample, which is implied by the generalized independence.

[l] J. Naudts, J. Ineq. Pure App. Math. 5, 102 (2004).

- [2] H. Matsuzoe, M. Henmi, Lect. Notes Com. 8085, 275 (2013).
- [3] N. Murata, Neural Comput. 16, 1437 (2004).
- [4] Y. Hasegawa, M. Arita, Physica A 388, 3399 (2009).
- [5] D. Ferrari, Y. Yang, Ann. Stat. 38, 753 (2010).